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Abstract

Sympathetic activity plays an important role in modulation of cardiac rhythm. Indeed, while 

exerting positive tropic effects in response to physiologic and pathologic stressors, β-adrenergic 

stimulation influences cardiac electrophysiology and can lead to disturbances of the heart rhythm 

and potentially lethal arrhythmias, particularly in pathological settings. For this reason, β-blockers 

are widely utilized clinically as antiarrhythmics. In this review, the molecular mechanisms of β-

adrenergic action in the heart, the cellular and tissue level cardiac responses to β-adrenergic 

stimulation, and the clinical use of β-blockers as antiarrhythmic agents are reviewed. We 

emphasize the complex interaction between cardiomyocyte signaling, contraction, and 

electrophysiology occurring over multiple time- and spatial-scales during pathophysiological 

responses to β-adrenergic stimulation. An integrated understanding of this complex system is 

essential for optimizing therapies aimed at preventing arrhythmias.
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1. Overview: the role of β-adrenergic activation in the heart

The sympathetic nervous system plays a key role in the neurohormonal control of 

cardiovascular function. It mediates neuronal and hormonal responses to fear, stress, or 

exercise by regulating cardiovascular function to meet the increasing demands of the body 

with a commensurate rapid increase in cardiac output (fight or flight response) (Cannon, 

1915). The fight or flight response is initiated by release of norepinephrine (NE), from the 

cardiac sympathetic nerves, and epinephrine (Epi), from the adrenal medulla, which bind to 

β-adrenergic receptors (β-ARs) on cardiomyocytes. This triggers a signaling cascade leading 

to increase in cAMP and consequent PKA activation and phosphorylation of a myriad of 

targets, which orchestrate the physiological response of the heart: increase in heart rate and 

conduction velocity, and increased force of contraction and speed of relaxation (Bers, 2002). 

Although these responses are necessary to meet physical demands, excessive β-AR 

stimulation is also associated with electrophysiological abnormalities, leading to sometimes 

lethal disturbances of the cardiac rhythm, particularly in the setting of underlying 

cardiovascular disease (Ripplinger et al., 2016). Indeed, pharmacological agents with β-AR 

antagonism (class II antiarrhythmics or drugs with some β-AR blocking action, like 

amiodarone) are effective antiarrhythmics in many conditions (January et al., 2014; Al-

Khatib et al., 2018). Here we review the intracellular pathways of β-adrenergic action, the 

mechanisms of cellular and tissue level regulation of cardiac electrical activity and 

arrhythmia, and the evidence for clinical antiarrhythmic indications for β-blocker therapy in 

cardiac diseases and arrhythmias, such as atrial fibrillation (AF), myocardial infarction (MI), 

and heart failure (HF). We suggest key questions and aspects that future experimentation and 

clinical studies should address to improve personalization of β-blockade therapy to varying 

arrhythmia types and patient groups.

2. Molecular mechanisms of β-adrenergic action

β-ARs are members of the G protein-coupled receptor superfamily. In the heart, at least two 

types of β-ARs are expressed, whereby β1-ARs account for the majority (~80%) and β2-

ARs comprise ~20% of cardiac β-ARs (Bristow et al., 1986; Xiao, 2001). β1-ARs have been 

shown to initiate a cell-wide response, whereas β2-ARs are localized in caveolae and 

associated preferentially with L-type Ca2+ (Ca) channels (Xiao, 2001).

Binding of NE or Epi to β1-ARs activate stimulatory G proteins (Gs). The Gα subunit of the 

Gs protein (Gsα) binds to and activates adenylyl cyclase (AC), which catalyzes the 

conversion of adenosine triphosphate (ATP) into the second messenger cyclic adenosine 

monophosphate (cAMP). cAMP also activates protein kinase A (PKA), which then 

phosphorylates several downstream targets in both contractile cells and in the conduction 

system, including L-type Ca channels, phospholamban (PLB), ryanodine receptors (RyRs), 

and myofilament proteins including troponin I (Figure 1). These proteins enable the 

coupling of cell excitation to contraction by increasing the amount of intracellular Ca at each 

systole (to augment contraction) and by decreasing the myofilament Ca sensitivity (to speed 

relaxation) (Bers, 2002). cAMP also binds directly to hyperpolarization-activated cyclic 

nucleotide gated (HCN) channels, predominantly expressed in cardiac nodal cells, to 

increase the pacemaker current If, which contributes to increased heart rate.

Grandi and Ripplinger Page 2

Pharmacol Res. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The documented effects of cardiac β2-AR activation are species-dependent, and vary with 

the developmental or pathophysiological state of the heart (reviewed in (Xiao, 2001)). β2-

ARs couple with Gs at baseline, but in some conditions, they couple with the G inhibitory 

(Gi) proteins, whereby the latter releases the activated Giα subunit to inhibit AC activity. 

The localization of β2-ARs in caveolae, closely associated with Ca channels (Figure 1), and 

the additional Gi pathway are thought to play a role in reshaping the spatiotemporal pattern 

of the Gs-AC-cAMP signaling and might have consequences on the kinetic (mismatch) 

between Ca and K+ (K) channel responses to adrenergic activation. The Gi pathway also 

delivers Gs-independent signals, i.e., cell survival signals through a Gi-Gβγ-PI3K-Akt 

pathway that could be important in counteracting the detrimental effects of chronic β-AR 

activation (see also Section 5).

β3-ARs are expressed to much lesser degree, and their function in the heart has been poorly 

investigated (Cannavo & Koch, 2017). Whereas species differences have been reported, in 

human ventricle, β3-ARs mainly couple with Gsαi proteins, and thus can counteract the 

effects of β1-AR and β2-AR activation (see also Section 5).

3. Cellular and tissue level β-adrenergic responses

3.1 Physiological responses

Sympathetic activation leads to increased heart rate (chronotropy), force of contraction 

(inotropy), speed of relaxation (lusitropy), and conduction (dromotropy). Positive 

chronotropy is mediated by phosphorylation-dependent changes in intracellular Ca handling 

as well as by cAMP-mediated increases in If (DiFrancesco & Tortora, 1991), which together 

accelerate diastolic depolarization in the sinoatrial (SA) node via the membrane and Ca 

coupled clocks (Lakatta & DiFrancesco, 2009), leading to faster impulse generation. Faster 

heart rates and K channel phosphorylation typically abbreviate cardiac repolarization (Bartos 

et al., 2015; Grandi et al., 2017), necessary to accommodate shorter cycle lengths, by 

counter-balancing the ICaL increase necessary for enhancing contractility.

Increased myocardial contractility is mediated by cytosolic Ca increase, which increases the 

fraction of bound myosin and actin filaments, and is primarily due to enhancement of L-type 

Ca current (ICaL) and PLB and RyR phosphorylation (Bers, 2002). Enhanced ICaL leads to 

increased transmembrane ‘trigger’ Ca initiating the Ca-induced-Ca-release process, whereas 

phosphorylation of PLB and RyRs contributes to increased sarcoplasmic reticulum (SR) Ca 

uptake and release, respectively (Figure 1). Enhanced Ca and PLB phosphorylation favor 

faster relaxation via accelerated SR Ca reuptake. Phosphorylation of troponin I also 

contributes to positive lusitropy by accelerating dissociation of Ca from the myofilaments. 

This reduction in myofilament Ca sensitivity would, by itself, be expected to decrease 

contractility, but it is outweighed by the dramatic increase in intracellular Ca available for 

contraction (Bers, 2002).

The positive dromotropic effect includes increased SA nodal and atrioventricular (AV) nodal 

conduction velocity primarily mediated by increased ICaL, which is a key component of the 

SA and AV nodal action potential upstroke (Bartos et al., 2015). Conduction velocity of the 

ventricular myocardium may also increase with β-AR activation (Wallace & Sarnoff, 1964; 
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Ng et al., 2007; Ajijola et al., 2017). PKA-mediated phosphorylation of INa may be involved 

(Herren et al., 2013) (see Section 3.2), but modulation of gap junctions is also a likely 

contributor (Figure 1, reviewed in (Campbell et al., 2014)). In the short-term, β-AR 

activation and increased cAMP impact phosphorylation and assembly of connexin43 (Cx43)

(TenBroek et al., 2001; Somekawa et al., 2005), whereas more long-term effects may be due 

to adrenergically-mediated alterations in Cx43 turnover or expression (Salameh et al., 2006).

3.2 Arrhythmogenic mechanisms of β-adrenergic action: ionic bases

The complex cardiac electrophysiological and Ca handling consequences of sympathetic 

activation involve changes in transmembrane potential homeostasis via both direct 

influences on sarcolemmal ion channels and transporters as well as indirect changes in Ca 

signaling that acutely regulate transmembrane fluxes and can lead to remodeling in the 

chronic (pathologic) setting.

cAMP/PKA signaling modulates several ion currents including INa, ICaL, IK, as well as If in 

nodal cells (increased If expression in the working myocardium in disease may also result in 

ectopic activity that can be targeted by β-AR blockade). PKA-dependent phosphorylation of 

INa potentiates the current via both gating changes (Zhou et al., 2000) and by enhancing 

channel trafficking (Zhou et al., 2002).This may contribute to the sympathetically-mediated 

increase in conduction velocity and formation of reentrant arrhythmias after MI, which is 

often characterized by myocardial depolarization (Nattel et al., 2007). Late INa is also 

increased upon β-AR activation, mediated by both PKA and CaMKII (Wagner et al., 2006) 

increases (Hegyi et al., 2018). Thus, β-AR stimulation may enhance late INa, lengthen the 

AP, and increase the propensity to arrhythmogenic early afterdepolarizations (EADs), 

especially in disease states when late INa is enhanced (Clancy & Rudy, 1999).

ICaL enhancement subsequent to PKA-dependent phosphorylation has been associated with 

prolonged AP and increased tendency for EADs, due to ICaL reactivation during the AP 

plateau (phase 2 EADs) (Weiss et al., 2010). Increased Ca influx and consequent increase in 

Ca load, needed for positive inotropy, also favors spontaneous SR Ca release and Na/Ca 

exchange-mediated depolarization before or after completion of repolarization, leading to 

phase 3 EADs or delayed afterdepolarizations (DADs) (Bers, 2008), respectively. PKA-

mediated phosphorylation of RyRs enhances their Ca sensitivity, which also favors DADs. 

Indeed, in genetically linked catecholaminergic polymorphic ventricular tachycardia 

(CPVT), DAD-induced arrhythmia is triggered by high sympathetic tone (for example 

during exercise) in patients with no myocardial damage (Laitinen et al., 2001).

K currents are also enhanced by cAMP/PKA signaling to counteract AP prolongation and 

limit Ca loading. Sympathetic stimulation modulates the delayed rectifier K current (Bartos 

et al., 2017). Under basal conditions the slowly activating IKs density is much lower than the 

rapidly activating component IKr in humans and other large mammals (Jost et al., 2007). 

However, β-AR stimulation increases IKs more than IKr (Banyasz et al., 2014) and 

counteracts ICaL enhancement to prevent potentially harmful action potential duration (APD) 

prolongation. Indeed, exercise and stress are typICaL arrhythmia triggers in congenital type 1 

long QT syndrome (LQTS), linked to IKs loss of function (Schwartz et al., 2001), and can be 

prevented by β-AR blockade (Vincent et al., 2009). In a recent study, computer simulations 
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showed that increasing the IKs/IKr ratio, without changing the resulting APD, limits EAD 

occurrence in response to perturbations. This suggests the intriguing notion that IKs is more 

effective than IKr in stabilizing APD and suppressing EADs (Devenyi et al., 2017). The 

kinetic mismatch between faster phosphorylation-mediated activation of ICaL and slower IKs 

increase upon β-AR activation transiently perturbs the balance of inward and outward 

currents (Liu et al., 2012). Computational modeling and simulations showed that this current 

imbalance that favors depolarization can prolong APD and favor EADs transiently (Xie et 

al., 2013).

At the tissue level, shorter APD and thus ERP can facilitate reentrant excitation, which is 

also promoted by structural changes such as fibrosis (Section 3.4) leading to slower impulse 

propagation. Spatial and temporal heterogeneity of PKA-dependent effects on depolarizing 

vs. repolarizing currents can also amplify dispersion of repolarization (DOR), thus 

increasing the likelihood for unidirectional conduction block and subsequent reentrant 

activity. Furthermore, faster ICaL activation (vs. IKs) upon rapid β-AR stimuli transiently 

steepens APD restitution leading to spiral wave breakup and precipitating breakdown of 

ventricular tachycardia (VT) into ventricular fibrillation (VF) (Xie et al., 2014). Thus, the 

cellular triggering mechanisms discussed above combined with the tissue-level reentrant 

substrate can set the stage for β-AR arrhythmogenesis.

3.3 Arrhythmogenic mechanisms of β-adrenergic action: nerve remodeling in disease

The heart is extensively innervated (Pauza et al., 2002a; Pauza et al., 2002b), and recent 

detailed analysis of nerve-cardiomyocyte interaction has suggested that the sympathetic 

nerve-to-myocyte ratio is similar to the capillary-to-myocyte ratio (Freeman et al., 2014; 

Zaglia & Mongillo, 2017). Indeed, in the normal heart, it appears as if nearly every 

cardiomyocyte is in contact with one or more sympathetic nerves (Freeman et al., 2014; 

Zaglia & Mongillo, 2017). This density is not uniform, however, as there exist gradients in 

innervation from base to apex and from epi- to endocardium (Kawano et al., 2003). 

Importantly, cardiac sympathetic innervation undergoes extensive functional and anatomical 

remodeling during cardiovascular disease. Remodeling of sympathetic neurotransmission is 

arrhythmogenic and is associated with both hyper- and hypo-innervation as well as altered 

neurotransmitter content and release.

Regional hyper-innervation was one of the first identified forms of neural remodeling that 

was linked to arrhythmias in humans (Cao et al., 2000), and has now been well documented 

in various cardiac pathologies, including MI, HF, and AF (reviewed in (Chen et al., 2001)). 

The underlying mechanisms by which hyperinnervation leads to arrhythmia are likely due to 

excess NE release in a localized region of the heart, which exacerbates the cellular and 

tissue-level arrhythmogenic processes described above (Section 3.2). Indeed, our group 

demonstrated the mechanisms by which localized sympathetic stimulation leads to the 

generation of ventricular ectopic beats via synchronization of SR Ca overload and release 

(Myles et al., 2012). Excess catecholamines are also linked to downregulation of K currents 

and prolonged ventricular APD (Aflaki et al., 2014). Furthermore, both hyper-innervation 

and chronically elevated sympathetic drive present in cardiovascular disease can lead to 

decreased β-AR responsiveness and G-protein uncoupling (Soltysinska et al., 2011), which 
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may in turn lead to further elevations in sympathetic activity, thus perpetuating a vicious 

cycle of elevated sympathetic tone.

Many studies on the links between hyper-innervation and arrhythmia have focused on 

ventricular arrhythmias in MI or HF. However, hyper-innervation has also been documented 

in patients with chronic AF (Nguyen et al., 2009) and may be important in the initiation and 

maintenance of atrial tachyarrhythmias. Indeed, modulating autonomic function to reduce 

innervation or sympathetic activity has shown useful for AF control (reviewed in (Chen et 

al., 2014)), yet β-blockers are not typically used in AF rhythm control (see Section 4). 

Histological studies of the human pulmonary vein–left atrium junction showed that 

numerous autonomic nerves are present (Tan et al., 2006; Vaitkevicius et al., 2009), and that 

there is a mix of adrenergic and cholinergic fibers, suggesting that complex spatio-temporal 

interactions between sympathetic and parasympathetic activity may be involved in AF.

Paradoxically, sympathetic hypo-innervation (or denervation) is also linked to ventricular 

arrhythmias. Indeed, recent clinical studies have suggested that the degree of viable 

denervated myocardium is an independent predictor of ventricular arrhythmia risk and 

cardiac arrest (Boogers et al., 2010; Nishisato et al., 2010; Fallavollita et al., 2014). One 

explanation of these findings may be that any abnormal heterogeneity in sympathetic 

transmission is arrhythmogenic (Rubart & Zipes, 2005). Chronic hypo-innervation may also 

result in upregulation of β-ARs and adrenergic super-sensitivity of the myocardium, 

meaning that supra-physiological responses may occur with normal catecholamine exposure. 

Recent data from murine models suggests that the infarct remains devoid of sympathetic 

fibers following MI (Gardner & Habecker, 2013), and our group demonstrated that these 

denervated infarcts are in fact super-sensitive to adrenergic agonists, leading to 

electrophysiological heterogeneity and triggered activity (Gardner et al., 2015). Therefore, 

β-blockers may have significant anti-arrhythmic value even in denervated conditions.

3.4 Arrhythmogenic mechanisms of β-adrenergic action: hypertrophy and fibrosis

Cardiomyocyte hypertrophy and increased fibrosis are hallmarks of cardiovascular disease 

and both aspects of remodeling are associated with arrhythmias. Indeed, both organ 

enlargement and fibrotic remodeling create a vulnerable structural reentrant substrate, by 

generating longer conduction pathways for reentry, slowing conduction, and imposing 

unexcitable barriers that facilitate arrhythmia initiation and maintenance. Several studies 

have shown that β-AR agonists, including NE and isoproterenol, as well as β1-AR 

overexpression can produce cardiac hypertrophy and fibrosis in vivo (Engelhardt et al., 

1999). Although myocyte hypertrophy may be an adaptive response to the increase in work 

load caused by myocardial β1-AR stimulation, there is evidence that direct adrenergic 

signaling may also be involved. In a seminal study in cultured cardiomyocytes, Simpson 

showed that NE-induced myocyte hypertrophy is mediated by α1-adrenergic receptors 

(Simpson, 1983). More recent work suggests that β1-AR signaling may also be involved. 

Pare and colleagues demonstrated that PKA phosphorylates a pool of perinuclear RyR2s, 

leading to increased local Ca, which in turn activates the pro-hypertrophic calcineurin-

nuclear factor of activated T-cells transcription factor pathway (Pare et al., 2005). Cardiac 

non-myocytes, including fibroblasts also have adrenergic receptors, and stimulation of β2-
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ARs in human and rodent cardiac fibroblasts leads to increased proliferation (Long et al, 

1993; Turner et al, 2003). This raises the intriguing possibility that direct β-AR signaling in 

fibroblasts could be an important contributor to fibrosis in MI and HF and may explain some 

of the anti-fibrotic effects observed with β-blocker treatment.

4. Indications for clinical use of β-blockers

It is evident that β-blocker therapy may antagonize multiple direct and indirect 

arrhythmogenic effects of increased sympathetic activity. Depending on the arrhythmia type, 

β-blockers reduce proarrhythmic risk by preventing sympathetically-mediated triggers, 

functional reentrant substrates, and slowing of the SA- and AV-nodal rates. Table 1 lists 

currently used β-blockers, their mechanisms of action and therapeutic uses, including 

specific indications for arrhythmia.

β-blockers are a cornerstone of anti-arrhythmic drug therapy. β-blockers are generally safe 

agents that effectively suppress ventricular ectopic beats and arrhythmia, and prevent sudden 

cardiac death in a wide array of cardiac diseases (Al-Khatib et al., 2018). According to 

guidelines, β-blockers are indicated in all patients, except those with AV block, bradycardia, 

or asthma, and recommended in all HF patients regardless of baseline rhythm, β-blockers 

are also used for control of ventricular rates to avoid rapid irregular ventricular activation 

due to rapid and irregular atrial firing during AF (January et al., 2014).

AF.

β-blockers are first line therapy for ventricular rate control in AF (January et al., 2014). 

They act by slowing conduction through the AV node, have been proven superior in 

ventricular rate control especially with exercise, and are preferred to digoxin and Ca channel 

blockers in patients with MI or HF. β-blockers may be avoided in patients with chronic 

pulmonary disease and at risk of bronchoconstriction. In acute AF settings, intravenous 

administration of esmolol, propranolol, and metoprolol has been shown effective; in chronic 

AF, oral administration of β-blockers, including atenolol, bisoprolol, metoprolol, nadolol, 

propranolol, and sotalol (a K channel blocker), is effective for ventricular rate control 

(January et al., 2014). Of note, comparison of different β-blockers demonstrated that 

carvedilol is less effective than metoprolol for rate control (Vittorio et al., 2008).

β-blockers have a weak antiarrhythmic action compared to Class I (Na channel blockers) 

and Class III agents (K channel blockers), and are not generally considered as atrial rhythm 

control agents (January et al., 2014). However, β-blockers may be beneficial in some 

patients in combination with an antiarrhythmic drug. Note that Class III amiodarone, the 

most effective rhythm control agent in patients with AF, is also a β-AR antagonist. β-

blockers may be helpful for AF prevention in patients with adrenergically-mediated AF, for 

example linked to stress or anxiety, and in patients following cardiothoracic surgery, with 

likely elevated postoperative sympathetic tone. On the other hand, they could be detrimental 

in vagally-mediated AF. Further, β-blockers have been shown to prevent the occurrence of 

AF in patients with systolic HF (Nasr et al., 2007).
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MI.

β-blockers are known to decrease mortality both during acute MI and with long-term 

administration following MI. Many randomized clinical studies of β-blockers were 

performed prior to routine anti-platelet and statin therapy, so the absolute benefit may be 

lower, but initial clinical trials indicated a 10-25% reduction in mortality in patients treated 

with timolol, metoprolol, atenolol, or propranolol (Norwegian Multicenter Study, 1981; 

Hjalmarson et al., 1983; 1986; Chadda et al., 1986). Current recommendations for acute MI 

include cardioselective oral β-blockers, such as metoprolol or atenolol. For long-term 

administration after MI, agents that lack sympathomimetic activity are preferred (Antman et 

al., 2004; Antman et al., 2008).

β-blockade effects include (i) decreased myocardial oxygen demand and reduction of 

ischemic burden, due to lowering of heart rate, myocardial contractility, and blood pressure; 

(ii) prevention of maladaptive ventricular remodeling and failure, and (iii) decreased risk of 

VF and sudden cardiac death, as demonstrated in both experimental and clinical studies. 

Specific anti-arrhythmic effects may include lengthening of the ventricular effective 

refractory period, suppression of triggered activity and automaticity, attenuation of 

electrophysiological heterogeneity (e.g., caused by MI-induced hypo- or hyper-innervation), 

and slowing of heart rate. Recent experimental evidence also suggests that sympathetic 

nerve activity can modulate conduction through putative reentrant circuits in the infarct 

border zone, making them more prone to conduction block (Ajijola et al., 2017), suggesting 

another possible anti-arrhythmic mechanism of β-blockade following MI.

HF.

β-blockers are a mainstay of HF therapy (Yancy et al., 2013; Yancy et al., 2017). Three β-

blockers, carvedilol (Packer et al., 2001), metoprolol (1999b), and bisoprolol (1999a), have 

been studied in clinical trials, whereby chronic treatment has been demonstrated to improve 

symptoms, reduce hospitalization, and enhance survival when used in addition to diuretics 

and angiotensin converting enzyme (ACE) inhibitors. β-blockers are only contraindicated in 

acute decompensated setting, whereby the negative inotropy is detrimental. β-blockers 

prevent sudden cardiac death in patients with systolic HF and reduce all-cause mortality, i.e., 

adverse effects of catecholamine stimulation, including increases in heart rate and 

myocardial energy requirements, maladaptive remodeling due to cell hypertrophy and death, 

fibrosis, proarrhythmia, and inappropriate stimulation of other pathways such as the renin-

angiotensin-aldosterone system.

HF-induced remodeling involves key nodes of the cAMP/PKA signaling cascade, including 

downregulation of β1- (~60%) and upregulation in β2- (~40%) and β3-AR, switching from 

Gs to Gi coupling, and activation of G protein-independent pathways, as recently reviewed 

(de Lucia et al., 2018). Extensive ionic remodeling also occurs (Nattel et al., 2007; Bartos et 

al., 2015) and involves downregulation of several K channels, i.e., those carrying IKr, IKs, 

IK1, and Ito and consequent AP prolongation, increased risk for EADs, and increased DOR 

and dispersion of refractoriness. Ca handling abnormalities in HF include increased 

spontaneous Ca release and risk for DADs (Bers, 2006). Alterations in gap junction and 

structural remodeling (Burchfield et al., 2013), involving myocyte hypertrophy, organ 
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dilation, and fibrosis, contribute to slowing of conduction that can lead to unidirectional 

conduction block and predispose to reentry. Thus, the antiarrhythmic action of β-blockers in 

HF might be mediated by attenuating both the triggers and the functional or structural 

arrhythmia substrates.

LQTS.

β-blockers are a mainstay of treatment for LQTS (Ackerman et al., 2017). β-blockers are 

recommended in patients diagnosed with LQTS, and should be considered in patients that 

carry a causative LQTS mutation but have normal QT interval. Increased sympathetic tone 

(e.g., during exercise) is one of the most important arrhythmia triggers in LQT1 (which is 

caused by mutations in the KCNQ1 gene leading to reduction in IKs current), and can be 

prevented by β-blockers (Schwartz et al., 2001; Vincent et al., 2009). In LQT2 (caused by 

loss of function of IKr), β-blockers are thought to be less effective than in LQT1. Recent 

studies comparing efficacy of different β-blockers, reviewed in (Ackerman et al., 2017), 

showed that propranolol and nadolol were similarly effective, whereas metoprolol had 

significantly less anti-arrhythmic efficacy. Importantly, when comparing the efficacy of 

different β-blocking agents independently for LQT1 and for LQT2, nadolol had the greatest 

efficacy among the more severely affected LQT2 patient group. It has been shown that β-

blockers reduce risk in LQT3 patients (Wilde et al., 2016), despite prior studies indicating 

that β-blockers were not as effective in LQT3 as compared to LQT1 or LQT2.

CPVT.

CPVT is caused by defective inter-domain interaction within the RyR2 (Yamamoto et al., 

2000), which enhances arrhythmias by promoting diastolic Ca leak. First-line treatment for 

CPVT patients includes exercise restriction and β-blockade (with agents lacking intrinsic 

sympathomimetic activity) (Ackerman et al., 2017). According to guidelines, β-blockers are 

recommended in all CPVT patients with documented ventricular arrhythmias (either 

spontaneous or stress-induced), and should be considered for asymptomatic mutation 

carriers even after a negative exercise stress test. Left cardiac sympathetic denervation might 

be an option for CPVT patients that are intolerant to β-blockers, but its efficacy remains to 

be fully assessed. Preliminary data on a small group of CPVT patients suggest that 

flecainide (a Na channel blocker known to interact with RyRs) significantly reduces 

arrhythmias and should be considered in combination with β-blockers when arrhythmia 

control is incomplete (Kannankeril et al., 2017). An implantable cardioverter-defibrillator 

(ICD) is indicated in patients that do not respond to β-blockade and flecainide (Ackerman et 

al., 2017).

5. Key future work

While available experimental and clinical evidence supports an important role of β-AR 

antagonism in counteracting acute and chronic detrimental effects of β-AR stimulation, 

important key questions remain to be addressed, that could pave the way for major new 

developments in β-blockade strategies and their therapeutic uses in cardiac disease and 

arrhythmia.
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Exploiting drugs’ receptor-specific β-AR agonism and antagonism.

While acute activation of β1- and β2-ARs exerts positive tropic actions, chronic activation of 

β1-ARs causes (mal)adaptive effects including cardiac hypertrophy and fibrosis, and cell 

death, which contribute to the development of HF, and lethal arrhythmias. On the other hand, 

long term stimulation of β2-ARs improves myocyte survival and overall cardiac function 

(Xiao, 2001). Further, while the functional significance of β3-ARs is incompletely 

understood, preclinical studies showed that β3-ARs can activate different signaling pathways 

that can protect the heart. For example, stimulation of β3-ARs activates a downstream NO-

GC-cGMP pathway that limits Ca influx and is thought to be cardioprotective (Cannavo & 

Koch, 2017). Thus, sustained activation of β2- and β3-ARs combined with β1-AR blockade 

could be a new receptor-specific therapeutic approach for the chronic HF treatment. In 

addition to the cardioprotective effects of β2- and β3-AR stimulation, activation of β2-AR 

stimulation has direct vasodilatory effects, and β3-AR activation has been shown to increase 

lipolysis and may also have antidepressant activity (Ferrer-Lorente et al., 2005; Consoli et 

al., 2007). Thus, such antagonist/agonist drugs could have myriad positive effects in patients 

with cardiovascular disease (see Table 1).

Targeting compartmentalized signaling.

There is solid evidence that activation of β-ARs can generate spatially restricted pools of 

cAMP that in turn lead to localized intracellular (rather than global) PKA activation and 

result in specific downstream functional effects (Surdo et al., 2017). For example, the 

intensity, duration, and spatial range of cAMP signals is strongly modulated by cAMP-

degrading phosphodiesterase activity and localization (Zaccolo & Pozzan, 2002; Surdo et 

al., 2017). Thus, using drugs that target specific cAMP pools, rather than affecting global 

intracellular cAMP levels, could be a promising strategy to improve therapeutic specificity 

(Zaccolo, 2009). This requires detailed understanding of the spatial organization, regulation 

and functional role of cAMP compartments. Furthermore, even in the presence of uniform 

cAMP signals, distinct domains of PKA-phosphorylated proteins can be obtained due to 

subcellular heterogeneity in protein phosphatase distribution (Burdyga et al., 2018), leading 

to differential phosphorylation of various downstream PKA targets that promote specific 

cardiac responses. For example, activation of protein phosphatase 1 in human HF opposes 

increased kinase activity and attenuates arrhythmogenic Ca leak (Fischer et al., 2018). Real-

time imaging of cAMP and resulting PKA activity using FRET-based sensors has greatly 

contributed to our understanding of compartmentalized cAMP signaling (Zaccolo & Pozzan, 

2002; Surdo et al., 2017). In particular, novel sensors targeted to protein complexes involved 

in excitation-contraction coupling have begun to address crucial questions regarding the size 

and spatial distribution of distinct cAMP compartments, the magnitude and kinetics of 

cAMP signals within each compartment, and the specific role of individual compartments in 

regulating cell function (Nikolaev et al., 2010; Surdo et al., 2017). For example, β2-ARs 

were shown to be concentrated in the transverse tubules, leading to localized cAMP signal in 

healthy cells. In HF, however, these receptors were redistributed to the cell crest, leading to 

diffuse receptor-mediated cAMP signaling (Nikolaev et al., 2010). These approaches have 

provided original insight into the regulation of cardiac excitation and contraction in health 

and disease with profound implications for therapy (Surdo et al., 2017).
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Evaluating the interaction between β-AR and other signaling pathways.

A clear link has been established between enhanced sympathetic activation and ventricular 

arrhythmias in both animal models and humans with cardiac disease. Excessive β-AR 

activation is well documented in HF, but the complex and multifaceted nature of the disease 

suggests that multiple other signaling pathways are perturbed. Notably, many of them might 

crosstalk with the β-AR system. For example, the renin-angiotensin-aldosterone system 

(RAAS) is also chronically active in HF. Experimental evidence indicates both that β-AR 

blockade may diminish activity of the RAAS, and that targeting the RAAS may reduce 

sympathetic nerve activity (Goldsmith, 2004), suggesting that combination therapy that 

suppresses each individual system involves a virtuous (negative feedback) cycle.

Stimulation of various signaling pathways, altered metabolism, and increased oxidative 

stress and their complex interactions may exert electrophysiological abnormalities acutely, 

and accumulation of these changes (e.g., in chronic pathological settings) may cause 

prolonged alterations in cardiac signal transduction and gene expression. In cardiac 

myocytes, β-adrenergic stimulation, via both direct (EPAC, NO)(Pereira et al., 2017) and 

indirect (increased Ca) mechanisms, enhances the activity of the Ca/calmodulin-dependent 

protein kinase (CaMKII), which is overexpressed and hyper-activated in HF, and critically 

regulates cellular subsystems participating in acute mechanical and electrical abnormalities 

in HF and models of adrenergic stimulation as well as long term cardiac remodeling in HF 

(Grandi & Dobrev, 2018). CaMKII phosphorylates a number of downstream targets that play 

important roles in excitation-contraction coupling (Figure 1), and many of these proteins are 

also targets of PKA-dependent phosphorylation. The relative contribution of these kinases to 

proarrhythmic functional alterations has begun to be defined. For example, it has been 

shown that while both kinases are involved in RyR dysregulation in human hypertrophy, in 

end stage human HF, CaMKII predominates to induce arrhythmogenic Ca leak (Fischer et 

al., 2013). Recent data also revealed differential modulations of INaL by PKA and CaMKII 

at different phases of the action potential (Hegyi et al., 2018). It has been hypothesized that 

in HF, synergy between CaMKII upregulation and altered Na and Ca fluxes can lead to a 

vicious (positive feedback) cycle perpetuating the arrhythmia, which is further accentuated 

during β-adrenergic stimulation. Thus, β-AR blockade could counteract arrhythmias via 

both direct effects and by de-escalating the synergistic interaction between CaMKII and β-

AR signaling (Bers, 2005).

Understanding sex-based differences.

There are well-known sex differences in male and female cardiac electrophysiological 

properties (Ambrosi et al., 2013). For example, women have a prolonged baseline APD and 

QT interval, which lead to increased risk for drug-induced torsades de pointe (TdP) in 

females (Pham et al., 2001; Salama & Bett, 2014; Kurokawa et al., 2016). Moreover, the 

mechanisms of arrhythmias in HF may also differ between males and females, with cells 

from male failing hearts demonstrating an increase in Ca leak, spark frequency, and 

triggered activity compared to failing female cells (Fischer et al., 2016). Interestingly, 

normal male rabbit hearts also have a stronger, and more arrhythmogenic response to β-AR 

stimulation, showing an increase in triggered activity, despite similar increases in diastolic 

Ca leak (Hoeker et al., 2014). Further, heart rate variability studies suggest underlying sex 
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differences in autonomic control of the cardiovascular system, whereby women have higher 

degrees of parasympathetic activation, whereas sympathetic-mediated responses 

predominate in men (Pothineni et al., 2016). This has been associated with an increased 

propensity in women of AF due to extensive vagal innervation of the atrial muscle sleeves 

extending into the pulmonary veins. Furthermore, the ORBIT-AF registry revealed lower 

rates of use of β-blockers as rate-control agents in women (as opposed to digoxin) (Piccini et 

al., 2016), though the reason is unknown. These observations also suggest that there may be 

significant sex differences in efficacy of β-blocker therapy for arrhythmia prevention. 

Interestingly, in the MERIT-HF study, which assessed the efficacy of metoprolol, the 23% of 

women included were the only subgroup in which no favorable effect on mortality was 

observed (although the women in this study were still 37% less likely to die than men) 

(Group, 1999). Yet, post-hoc analyses of MERIT-HF and other studies do not show sex 

differences in mortality with β-blocker therapy for HF (Ghali et al., 2002). Importantly, 

while these data regarding mortality do not indicate whether these deaths were arrhythmic in 

nature, the mixed observations suggest an urgent need to better understand the mechanisms 

of underlying sex differences, which may suggest more personalized approaches to β-

blocker therapy.

6. Conclusions

The effects of β-adrenergic stimulation on cardiac electrical activity and remodeling involve 

structural and functional changes occurring over multiple time- and spatial-scales. While 

significant progress has been made towards understanding the role of β-AR signaling in 

heart disease and arrhythmias, a comprehensive quantitative and functional understanding of 

the role of autonomic stimulation in normal cardiac electrophysiology and life-threatening 

arrhythmias is still lacking. We contend that defining the structural and functional anatomy 

of cardiac innervation, and linking neural structure and function to multiscale cardiac 

electrophysiology, e.g., via computational modeling approaches and simulation (Morotti & 

Grandi, 2018), is a necessary step to improve our understanding of this complex system. 

Integrating these data from the sub-cellular, tissue, and multi-organ levels could accelerate 

our understanding of the complex network of pathways involved, predict mechanisms 

underlying the interaction between adrenergic activation and the functional cardiac substrate, 

and facilitate identification and specific targeting of arrhythmia provoking conditions by 

autonomic drugs.
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Highlights

• β-blockers are effective antiarrhythmics in many conditions, including heart 

failure, myocardial infarction, and atrial fibrillation

• β-adrenergic action on cardiac function is complex, and involves structural 

and functional changes occurring over multiple time- and spatial-scales.

• Exploiting drugs’ receptor-specific drug action, targeting compartmentalized 

signaling, and understanding sex differences in drug responses are key aspects 

that future studies should address to improve personalization of β-blockade 

therapy to varying arrhythmia types and patient groups.
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Figure 1: Molecular and cellular mechanisms of β-adrenergic action.
Schematic of the main cellular processes linking β-adrenergic activation (and β-adrenergic 

receptor specific signaling) to increased propensity for arrhythmia. Protein kinase A (PKA) 

phosphorylates multiple targets (blue symbol “P”) that directly affect membrane 

electrophysiology and Ca signals. These include the L-type Ca channel (carrying ICaL), 

ryanodine receptor (RyR), phospolamban (PLB) that regulates the sarcoplasmic reticulum 

Ca pump (SERCA), phospolemman (PLM) that regulates the Na/KATPase (NKA), the 

sarcolemmal Na and K channels (carrying INa and IKs), myofilament proteins, and connexin 

43 (cx43). These downstream effects of β-adrenergic action facilitate the development of 

ectopic activity (EADs and DADs) and functional reentry (shortened action potential 

duration, APD and effective refractory period, ERP, increased dispersion of repolarization, 

DOR, and altered conduction, CV). β-adrenergic activation is also involved in structural 

remodeling (e.g., fibrosis) that facilitates the formation of a structural reentrant substrate. 

CaMKII is a central player in cardiac disease and adrenergically-mediated arrhythmia; its 

activity is enhanced by β-adrenergic activation via both increases in Ca and cAMP, and leads 

to increased phosphorylation of many of the same PKA targets (red symbol “P”).
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Table 1 –
Mechanisms of action and therapeutic uses of β-blockers.

Currently used β-blockers, their mechanisms of action (including β-AR receptor sensitivity), other extra-

cardiac actions, and therapeutic uses are listed. Specific indications for arrhythmia are in red, and indication 

for HF, MI and AF are in blue. Information compiled from (Brunton et al., 2018).

Agent Mechanism of Action Therapeutic use

Non-selective β-adrenergic antagonists (first generation):

 Propranolol Equal affinity for β1 and β2. Membrane stabilizing effect. Used for: hypertension, angina, supraventricular 
arrhythmia, ventricular arrhythmia, MI.

 Nadolol Equal affinity for β1 and β2. No sympathomimetic or 
membrane stabilizing activity.

Used for: Hypertension, angina, LQTS.

 Timolol Equal affinity for β1 and β2. No sympathomimetic or 
membrane stabilizing activity.

Hypertension, congestive HF, acute MI.

β1-selective adrenergic antagonists (second generation):

 Metoprolol No sympathomimetic or membrane stabilizing activity. Used for: essential hypertension, angina, tachycardia, HF, 
vasovagal syncope, secondary prevention after MI

 Atenolol No sympathomimetic or membrane stabilizing activity. Used for: hypertension, coronary heart disease, 
arrhythmias, angina, reduces risk of complications after 
MI

 Esmolol Little sympathomimetic activity, no membrane-stabilizing 
activity.

Used when short duration is desired or in critically ill 
patients where rapid withdrawal may be necessary.

 Acebutolol Some sympathomimetic and membrane stabilizing activity. Used for hypertension, atrial and ventricular arrhythmias, 
acute MI in high-risk patients

 Bisoprolol No sympathomimetic or membrane stabilizing activity. Higher 
degree of β1 selectivity than metoprolol or atenolol.

Used for: HF, hypertension, MI, arrhythmias

β-adrenergic antagonists with additional cardiovascular effects (third generation - also possess vasodilatory actions)

 Labetalol Competitive antagonist to α1 and β receptors (β1 and β2). 
Partial agonist activity at β2 and also inhibits neuronal uptake 
of NE (cocaine-like).

Used for chronic hypertension or hypertensive 
emergencies

 Carvedilol Blocks α1, β1, and β2 similar to labetalol, but also has anti-
oxidant and anti-inflammatory properties. Has membrane-
stabilizing action, but no sympathomimetic activity.

Produces vasodilation and anti-inflammatory effects may 
help treatment of HF. Approved for use in hypertension, 
congestive HF, and LV dysfunction after MI

 Celiprolol β1 antagonist. β2 partial agonist. Also α2 antagonist and 
promotes NO production.

Reduces HR and blood pressure. Used to treat 
hypertension and angina

 Nebivolol β1 antagonist with endothelial NO-mediated vasodilatory 
action.

Also has antioxidant action and neutral or favorable 
effects on carbohydrate and lipid metabolism. Approved 
for the treatment of hypertension
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